Membrane trafficking and osmotically induced volume changes in guard cells.
نویسندگان
چکیده
Guard cells rapidly adjust their plasma membrane surface area while responding to osmotically induced volume changes. Previous studies have shown that this process is associated with membrane internalization and remobilization. To investigate how guard cells maintain membrane integrity during rapid volume changes, the effects of two membrane trafficking inhibitors on the response of intact guard cells of Vicia faba to osmotic treatments were studied. Using confocal microscopy and epidermal peels, the relationship between the area of a medial paradermal guard-cell section and guard-cell volume was determined. This allowed estimates of guard-cell volume to be made from single paradermal confocal images, and therefore allowed rapid determination of volume as cells responded to osmotic treatments. Volume changes in control cells showed exponential kinetics, and it was possible to calculate an apparent value for guard-cell hydraulic conductivity from these kinetics. Wortmannin and cytochalasin D inhibited the rate of volume loss following a 0-1.5 MPa osmotic treatment. Cytochalasin D also inhibited volume increases following a change from 1.5 MPa to 0 MPa, but wortmannin had no effect. Previous studies showing that treatment with arabinanase inhibits changes in guard-cell volume in response to osmotic treatments were confirmed. However, pressure volume curves show that the effects of arabinanase and the cytochalasin D were not due to changes in cell wall elasticity. It is suggested that arabinanase, cytochalasin D, and wortmannin cause reductions in the hydraulic conductivity of the plasma membrane, possibly via gating of aquaporins. A possible role for aquaporins in co-ordinating volume changes with membrane trafficking is discussed.
منابع مشابه
Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation.
Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1...
متن کاملChanges in surface area of intact guard cells are correlated with membrane internalization.
Guard cells must maintain the integrity of the plasma membrane as they undergo large, rapid changes in volume. It has been assumed that changes in volume are accompanied by changes in surface area, but mechanisms for regulating plasma membrane surface area have not been identified in intact guard cells, and the extent to which surface area of the guard cells changes with volume has never been d...
متن کاملOsmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation.
Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were ...
متن کاملVolume Changes in Sarcoplasmic Reticulum of Rat Hearts Perfused with Hypertonic Solutions
To explore whether morphometry of intracellular membrane-limited subcompartments can be used to follow physiological volume changes in such subcompartments in hearts rapidly fixed by perfusion fixation, we have measured osmotically induced volume changes in electron micrographs of longitudinally oriented sarcoplasmic reticulum (LSR) and terminal cisterns (TC) of rat left ventricular myocardial ...
متن کاملThe dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba.
Stomatal movement is important for plants to exchange gas with environment. The regulation of stomatal movement allows optimizing photosynthesis and transpiration. Changes in vacuolar volume in guard cells are known to participate in this regulation. However, little has been known about the mechanism underlying the regulation of rapid changes in guard cell vacuolar volume. Here, we report that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 57 15 شماره
صفحات -
تاریخ انتشار 2006